Protein-Protein Docking with F2Dock 2.0 and GB-Rerank
نویسندگان
چکیده
MOTIVATION Computational simulation of protein-protein docking can expedite the process of molecular modeling and drug discovery. This paper reports on our new F(2) Dock protocol which improves the state of the art in initial stage rigid body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel knowledge-based filters and finally a solvation energy (GBSA) based reranking technique. Our algorithms are based on highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the computations and also provide guaranteed bounds on approximation error. RESULTS The improved affinity functions show superior performance compared to their traditional counterparts in finding correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We compared F(2) Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0, F(2) Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F(2) Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F(2) Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which indicates that the two docking protocols can also complement each other. AVAILABILITY The docking protocol has been implemented as a server with a graphical client (TexMol) which allows the user to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for download. Server: http://www.cs.utexas.edu/~bajaj/cvc/software/f2dock.shtml. Client: http://www.cs.utexas.edu/~bajaj/cvc/software/f2dockclient.shtml.
منابع مشابه
Protein-Protein Docking with FDock 2.0 and GB-rerank Supplement
1 Details on Affinity Function Computations 2 1.1 Shape Complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Skin-core Definition and Weighting . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 FFT based formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Electrostatics (E). . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملImmunization with cytomegalovirus gB protein produced by the Baculovirus Expression Vector System to elicit humoral immune response in BALB/c mice
Introduction: Due to the role of neutralizing antibodies which can prevent human cytomegalovirus (HCMV) infection, most of the efforts have been focused on designing vaccines capable of eliciting protective humoral immunity. The aim of this study was to evaluate the antibody response of BALB/c mice to a truncated HCMV glycoprotein B produced in insect cells using Baculovirus Expression Vector ...
متن کاملIdentification of Agents with Potential Leishmania Malate Dehydrogenase Inhibitor Activity: A Proteomic and Molecular Docking Approach
Background and purpose: Leishmaniasis is one of the most important infectious diseases caused by different species of the Leishmania, which is a public health problem worldwide. So far, no effective vaccine is introduced for this disease and drug therapy is associated with many side effects. Therefore, this study was designed to identify novel FDA-approved compounds with anti-leishmanial activ...
متن کاملStudy of Human Albumin Protein Interaction with Fluorouracil Anticancer Drug Using Molecular Docking Method
Introduction: Drugs are mainly delivered to the target tissues by plasma proteins, such as human serum albumin, in the human body. Practical information about the thermodynamic parameters of drugs and their stability can be obtained using simulation methods, such as molecular docking. Material & Methods: This study, investigated the molecular docking of human serum albumin with fluorouracil an...
متن کاملSignificant Enhancement of Docking Sensitivity Using Implicit Ligand Sampling
The efficient and accurate quantification of protein-ligand interactions using computational methods is still a challenging task. Two factors strongly contribute to the failure of docking methods to predict free energies of binding accurately: the insufficient incorporation of protein flexibility coupled to ligand binding and the neglected dynamics of the protein-ligand complex in current scori...
متن کامل